Complex analysis: limits and continuity.

Thursday, September 14, 2023 11:00 AM

Limits and Continuity: a Short review.

Same as for
$$\mathbb{R}^{2}$$
!

Det. Let f be a function defined on a $2d$ $K \subseteq \mathbb{C}$.

Thus a limit A as $z \to z_0$ if

 $\forall z > 0 \exists s > 0 : 0 < |z - z_0| < \delta$, $z \in K \Rightarrow |f(z) - A| < \varepsilon$.

Properties. 1) If the limit exists it is unique

provided 20 is a limit point of
$$k$$

($\forall \delta > 0$: β ($20, \delta$) $\bigcap (k \setminus \{20\}) \neq \emptyset$).

2) $\lim_{z \to 20} (\{12\}) = \lim_{z \to 20} f(z) + \lim_{z \to 20} g(z)$ (i.4 both exist)

2) $\lim_{z \to 20} (\{12\}) = \lim_{z \to 20} f(z) \times \lim_{z \to 20} g(z)$ (i.4 both exist)

2) $\lim_{z \to 20} f(z) \times g(z) = \lim_{z \to 20} f(z) \times \lim_{z \to 20} g(z)$ (i.4 both exist)

4) $\lim_{z \to 20} f(z) = A \Leftrightarrow \lim_{z \to 20} Imm Re f(z) = Re A$
 $\lim_{z \to 20} Imm f(z) = Imm A$

5) $\lim_{z \to 20} f(z) = A \Rightarrow \lim_{z \to 20} Imm f(z) = A$

Proof. $\lim_{z \to 20} f(z) = \lim_{z \to 20} f(z) = A$
 $\lim_{z \to 20} f(z) = A \Rightarrow \lim_{z \to 20} f(z) = A$
 $\lim_{z \to 20} f(z) = A$

Important property:
$$K_1, K_2 \subset K$$
. Let $\lim_{z \to z_0} f(z) = A$.

Then $\lim_{z \to z_0} f(z) = \lim_{z \to z_0} f(z) = A$.

 $\lim_{z \to z_0} f(z) = \lim_{z \to z_0} f(z) = A$.

Fixero, 3870...

Proof. $\lim_{z \to z_0} f(z) = \lim_{z \to z_0} f(z) =$

Corollary.
$$K_1,K_2 \subset K$$
, $\lim_{z \to z_0} f(z) \neq \lim_{z \to z_0} f(z) = \sum_{z \in K_1} f(z)$

$$\lim_{z \to z_0} f(z) \text{ does not exist.}$$

Remark All of this can be done at
$$\infty$$
,

but we need to use spherical metric:

$$\lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{|f(z)|} = 0$$

$$\lim_{z \to z_0} \frac{1}{|f(z)|} = 0 \iff \lim_{z \to z_0} \frac{1}{|f(z)|^2} = \lim_{z \to z_0} \frac{1}{|f(z)|} = 0$$

$$|(A + (1) = A \iff \forall \epsilon > 0 \Rightarrow \delta > 0 \text{ or } d(\epsilon, \infty) < \delta \Rightarrow) (f(\epsilon) - A | < \epsilon$$

$$|(A + (1) = A \iff \forall \epsilon > 0 \Rightarrow \delta > 0 \text{ or } d(\epsilon, \infty) < \delta \Rightarrow) (f(\epsilon) - A | < \epsilon$$

$$|(A + (1) = A \iff \forall \epsilon > 0 \Rightarrow \delta > 0 \text{ or } d(\epsilon, \infty) < \delta \Rightarrow) (f(\epsilon) - A | < \epsilon$$

$$\frac{1}{\sqrt{1+12l^{2}}} = \delta \implies f(t) - Al = \varepsilon$$

$$\frac{1}{\sqrt{1+12l^{2}}} = \delta \implies \frac{1}{12l} = 2\delta$$

$$\frac{1}{\sqrt{1+12l^{2}}} = \delta \implies \frac{1}{\sqrt{1+12l^{2}}} = \delta$$

$$\frac{1}{\sqrt{1+12l^{2}}} = \delta \implies f(t) - Al = \varepsilon$$

$$\frac{1}{\sqrt{1+12l^{2}}} = \delta \implies f(t) - Al = \varepsilon$$

Important (and easy) observation: if 2, \$\psi\$ then
$$\lim_{z \to z_0} |z - z_0| = 0 \ (=) \ \lim_{z \to z_0} d(z, z_0) = \lim_{z \to z_0} \frac{|z - z_0|}{|z - z_0|^2} = 0.$$